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Abstract

Unsupervised Domain Adaptation (UDA) is a promising
approach to adapt models for new domains/environments.
Previously, many adversarial methods are proposed to con-
duct feature alignment for adaptation. However, such
adversarial-based methods can only reduce domain style
gap, but cannot address the domain content distribution gap
that is also important for object detectors. To overcome this
limitation, we propose the Cross-Domain Semi-Supervised
Learning (CDSSL) framework by leveraging high quality
pseudo labels to learn from target domain directly. Mean-
while, we conduct fine-grained domain transfer to reduce
the style gap. Experiments show our approach achieves new
state-of-the-art performance (2.2% - 9.5% better than the
best prior work on mAP). The full paper could be found at
https://arxiv.org/abs/1911.07158. Code will be available at
https://github.com/Mrxiaoyuer/CDSSL.

1. Introduction

Recently, Unsupervised Domain Adaptation (UDA) has
become a promising approach to adapt model into dynamic
real-world scenarios [2, 5, 9, 10]. Previously, most UDA
works for object detectors [I, 13, 7, 11] use adversar-
ial feature alignment methods to learn invariant features
from source/target domains. However, due to the lack of
target-domain labels, adversarial methods can only perform
coarse-grained feature alignment and are prone to misalign-
ment, e.g., misaligning features of fore-/backgrounds, dif-
ferent classes, etc. Meanwhile, they may not be able to align
content distribution shift between two domains [12].

Targeting at these issues, we take a different adapta-
tion approach by a semi-supervised learning (SSL) method:
Self-Training [6]. Self-Training utilizes labeled data to train
annotators and generates pseudo labels on unlabeled data.
Both parts of data are then combined for further training
[4]. Although such pseudo labels are not as accurate as
ground-truth (GT) labels, they bring several benefits com-
pared to adversarial feature alignment method: (i) they en-
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abled detectors to learn detection loss from target-domain
images directly, instead of in-directly being aligned by dis-
criminator in feature level; (ii) the overall pseudo labels on
the target domain approximates the real data distribution,
reducing the potential content distribution gaps.

We evaluate our CDSSL framework on several detection
adaptation benchmarks, including synthetic-to-real, cross-
camera, and normal-to-foggy. Our approach performs con-
sistently better than prior best work by 2.2% - 9.5% mAP,
achieving the new SOTA detection adaptation performance.

2. Methodology

CDSSL Framework Overview. The CDSSL framework
consists of two major steps: (a) To reduce the domain style
gaps, we first conduct fine-grained domain style transfer.
Naive CycleGAN tends to modify objects during transla-
tion due to large receptive field. Therefore, we restrict its
receptive filed so that it only translates styles and better re-
serves small objects. Then the initial pseudo label anno-
tator will be trained on the style-translated domain to gen-
erate initial pseudo labels on target domain. (b) We then
run iterative self-training by combing the source-domain
data (with ground-truth (GT) labels) and the target-domain
data (with pseudo labels) together. Inevitably, the pseudo
labels contain some annotation errors. Therefore, we con-
duct imbalanced mini-batch sampling per training iteration,
to under-sample the pseudo labels and over-sample the GT
labels. After each self-training round, we use the better-
trained models to conduct confidence-based hard labeling
for better pseudo labels. The self-training could iterate mul-
tiple times till the model performance stops improving.

Fine-grained Domain Style Transfer Original cyclegan
design does not target at any specific end tasks like ob-
ject detection. As a result, vanilla cyclegan often not only
translates the styles, but also translates major objects or
backgrounds (Fig. 1 (a)), which is detrimental for detection
tasks. We find this is due to the large receptive field of cy-
clegan, which enables it to learn translating entire objects.



(b) Our Fine-Grained CycleGAN (mAP: 48.1)

(a) Coarse-Grained CycleGAN (mAP: 42.4)

Figure 1: Coarse-grained v.s. our fine-grained CycleGAN.

To solve this problem, we propose a simple yet effective
method: restricting the receptive field of cyclegan. Specif-
ically, in training process, we restrict the translating patch
size of the generator and discriminator so that the models
can only learn translating the local textures without “see-
ing” any major objects or contexts. During testing, by us-
ing the fully-convolutional model structure, the generator
can be applied on the full-size image for fine-grained style
translation. Fig. 1 (a) and (b) compare the results between
coarse-/fine-grained translation. Clearly, the cyclegan with
large receptive field are not suitable for detection adaptation
with even missing objects during translation. By contrast,
our fine-grained one translates styles and preserves objects
both well. On the syn-fo-real benchmark, such fine-grained
design alone leads to +5.7% mAP for the following detec-
tion tasks than naive cyclegan translation.

Iterative Self-Training After domain transfer, we con-
duct initial annotator training on the style-translated source
domain. Then the target domain is annotated with pseudo
labels by the annotator. Such pseudo labels on target do-
main can contain some errors. Therefore, we optimize the
self-training with imbalanced sampling per iteration and
confidence-based labeling per self-training round.
Imbalanced Sampling: Since the source-domain samples
have ground-truth labels, the loss from source labels can be
more accurate, especially in the localization head. There-
fore, we over-sample the source domain samples but under-
sample the target domain ones during training, which pro-
vides training stabilization and error-correction effects.
Confidence-based Labeling: At the end of each self-training
round, we update the pseudo labels by applying the better-
trained detector on the target domain. But to control the la-
bel quality, we use confidence-thresholding to choose most
confident predictions and sharpen the soft probability into
hard labels to learn more confident representations: During
iterative self-training rounds, some error boxes’ confidence
will be reinforced and similar wrong predictions can appear
later with higher confidence. Therefore, we also progres-
sively increase the confidence threshold in later rounds.

3. Experimental Evaluation

Experiments Setup. For experiments setup, we follow
the same settings asin [1, 13, 7]. We use Faster-RCNN with

Table 1: Sim10k to Cityscapes Table 2: KITTI to Cityscapes
(Resolution: 512 & 600). (Resolution: 512 & 600).

Methods | Car AP

512Baseline 33.0
STZCVPR’18 [ 1] 39.0
SIZCVPR’19[13] | 43.0
SZ0urs 49.0

600Baseline 34.6
S90CVPR’19 [7] 423
SOOICCV'19[11] | 42.8
59090urs 52.3

Methods | Car AP

512Baseline 36.4
SIZCVPR’18 [1] 38.5
SIZCVPR’19[13] | 425
S20urs 45.2

600Baseline 37.5
SOUCVPR’19 [7] -

SO0ICCV 19 [11] -
5000urs 46.4

Table 3: Cityscapes to Foggy-Cityscapes Performance.
Methods/Class | 1 2 3 4 5 6 7 8 |mAP

512Baseline 29.7 322 44.6 16.2 27.0 9.1 20.7 29.7]26.2
SIZCVPR’18 [1] [25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1]27.6
SIZCVPR’19 [13]]33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6/33.8
20urs 33.9 38.7 52.1 26.3 43.4 32.9 27.5 35.5/36.3

S00CVPR’19 [7] [29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3|34.3
SOUICCV’19[11][33.2 44.2 44.8 28.2 41.8 28.7 30.5 36.5/36.0
5990urs 38.2 42.1 55.6 25.9 43.5 27.6 33.5 39.2[38.2

VGGI16 backbone. Three adaptation scenarios are evalu-
ated, namely Synthetic to Real (Sim2City), Cross Camera
(Kitti2City) and Normal to Foggy (City2Foggy). For fair
comparison with prior works, we evaluate our framework
under two resolution settings: 512 pixels or 600 pixels as
image’s shorter side. We report the mAP at IoU=0.5.

Synthetic to Real Adaptation. Here we use SIM10K —
Cityscapes. The results are shown in Table 1 with baseline
and other methods [ 1, 13, 7, 11]. Compared to prior works,
our approach achieves the new SOTA performance, +6.0%
and +9.5% than prior work in both 512 and 600 resolutions.

Cross Camera Adaptation. Here we use KITTI —
Cityscapes [3]. The results are shown in Table 2. Com-
pared to baseline, our method brings +8.8% improvement,
and outperforms the previous best result [13] by +2.7%.

Multi-Class Normal to Foggy Adaptation. In this part,
we evaluate our framework on Cityscapes — Foggy-
Cityscapes [8]. As shown in Table 3, our approach achieves
the best performance, achieving +2.5% and +2.2% mAP
gain compared to prior SOTA performance [13].

4. Conclusion

In this work, we propose CDSSL: a cross-domain semi-
supervised learning framework to address the UDA problem
for object detection. Specifically, we conduct domain trans-
fer and then launch the iterative self-training. Imbalanced
sampling and confidence-based label sharpening are also
proposed to mitigate the label errors. Experiments show
that our work consistently outperforms previous SOTA by
2.2% - 9.5% in various adaptation scenarios.
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