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Abstract

We tackle an unsupervised domain adaptation problem
for which the domain discrepancy between labeled source
and unlabeled target domains is large, due to many fac-
tors of inter- and intra-domain variation. We propose to
decompose domain discrepancy into multiple but smaller,
and thus easier to minimize, discrepancies by introducing
unlabeled bridging domains that connect the source and
target domains. We realize our proposed approach through
an extension of the domain adversarial neural network with
multiple discriminators, each of which accounts for reducing
discrepancies between unlabeled (bridge, target) domains
and a mix of all precedent domains including source.

1. Introduction
With advances in supervised deep learning, many vi-

sion problems have realized significant performance im-
provements [12, 15, 16, 8, 7, 13, 14, 3]. However, this
success is strongly dependent on the existence of large-
scale labeled data [5], often not available in practice. To
address this challenge, unsupervised domain adaptation
(UDA) [6, 4, 11, 10, 9, 17] has been proposed to improve
the generalization ability of classifiers, using unlabeled data
from the target domain. The core idea is to reduce the dis-
crepancy metric [2, 1] between the two domains, measured
by the domain discriminator [6] or MMD kernel [18] at cer-
tain representation of deep networks. Nevertheless, it could
be difficult to model such dynamics when there are many fac-
tors of inter- and intra-domain variation applied to transform
the source domain into the target domain.

In this work, we aim to solve unsupervised domain adap-
tation challenges whose domain discrepancy is large due to
variation across the source and target domains. Figure 1 pro-
vides an illustrative example of adapting from labeled images
of cars from the internet to recognize cars for surveillance
applications at night. Two dominant factors, the perspective
and illumination, make this a difficult adaptation task. As
a step towards solving these problems, we introduce unla-
beled domain bridges whose factors of variation are partially
shared with the source domain, while the others are in com-
mon with the target domain. As in Figure 1, the domain on
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Figure 1. We introduce bridging domains composed of unlabeled
images with some common factors to the source (e.g., lighting) and
the target domain (e.g., viewpoint, image resolution).

the bottom left shares a consistent lighting condition (day)
with the source, while viewpoint is similar to that of the tar-
get domain. There also could be multiple bridging domains,
such as the bottom right one whose lighting intensity is in
the midst of the first bridging domain and the target domain.

To utilize unlabeled bridging domains, we propose to
extend the domain adversarial neural network (DANN) [6]
using multiple domain discriminators, each of which ac-
counts for learning and reducing the discrepancy between
unlabeled (bridging, target) domains and the mix of all prece-
dent domains. We hypothesize that the decomposition of a
single, large discrepancy into multiple, small ones leads to a
series of easier optimization problems, culminating in better
alignment of source and target domains.

2. Method
Our proposed domain adaptation framework is built atop

DANN [6], which transfers a classifier learned from the
labeled source domain DS to the unlabeled target domain
DT by learning domain-invariant features. It uses a domain
discriminator d to control the amount of domain-related
information in the extracted feature. First, d needs to be
well trained to tell the difference between source and target
domains. In comparison, the feature extractor f wants to
confuse the discriminator d to remove any domain-specific
information. Moreover, to make sure the extracted feature
is task-related, f is trained to generate features that can be
correctly classified by a classifier C.
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In our proposed framework, we introduce additional sets
of unlabeled examples, which we call bridging domains, that
reside in the transformation pathway from labeled source to
unlabeled target domains to guide adaptation process. Be-
sides DS and DT , we denote DB as a bridging domain. Our
framework is composed of feature extractor f(x) from an
input x∈DS ∪DB ∪DT and classifier C(f(x)). Unlike the
DANN that directly aligns DS and DT , we decompose the
adaptation into two as follows: First,DS andDB are aligned.
This is an easier task than direct adaptation as in DANN,
since there are less discriminating factors between DS and
DB . Second, we adapt DT to the union of DS and DB . Sim-
ilarly, the task is easier since it needs to discover remaining
factors between DT and DS or DB , as some factors are al-
ready found from the previous step. To accommodate two
adaptation steps, we use two binary domain discriminators
d1 for learning discrepancy between DS and DB and d2
between DS ∪DB and DT . The objectives are:

Ld1 = EDS
log d1(f) + EDB

log(1− d1(f)) (1)
Ld2 = EDS∪DB

log d2(f) + EDT
log(1− d2(f)) (2)

Both Ld1 and Ld2 are minimized to update their respective
model parameters θd1 and θd2 . Once d1 and d2 are updated,
we update the classifier according to the classification loss:

LC = E(x,y)∼DS×Y [−y logC(f(x))] (3)

and the feature extractor to confuse discriminators as fol-
lows:

min
θf ,θC

LC + λ1Ld1 + λ2Ld2 (4)

where θC is the parameter for the classifier, and λ1 and λ2
are two hyperparameters to adjust the strengths of adversarial
loss. We alternate updates between d1, d2 and f, C.

Our framework can be extended to the case for which
multiple unlabeled bridging domains exist, desirable to span
larger discrepancies between source and target domains. To
formalize, we denote D0 =DS ,DM+1 =DT as source and
target domains, and Dm, m=1, ...,M as unlabeled bridg-
ing domains with Dm closer to source than Dm+1. We in-
troduce M+1 domain discriminators d1, ..., dM+1, each of
which is trained by maximizing the following objective:

Ldm = E⋃m−1
i=0 Di

log dm(f) + EDm
log(1− dm(f)) (5)

and the learning objective for f and C is given as follows:

min
θf ,θC

LC +
∑M+1
m=1 λmLdm . (6)

3. Experiments
We evaluate our methods on the CompCars dataset [19],

which provides two sets of images: 1) the web-nature im-
ages are collected from car forums, public websites and

Model SV1–3 SV4–5

Web (source only) 72.67 19.87
Web→SV4–5 68.90±1.28 49.83±0.70
Web→SV4→5 74.03±0.71 61.37±0.30
Web→SV1–5 83.29±0.14 77.84±0.34
Web→SV1–3→4–5 82.83±0.40 78.78±0.33

Table 1. Accuracy and standard error over 5 runs on SV test sets
for models with and without bridging domain.

Model SV5

Web→SV5 37.83±0.51
Web→SV4→5 58.40±0.60
Web→SV1→5 69.69±0.99
Web→SV3→4→5 74.01±0.52
Web→SV2→3→4→5 75.15±0.18
Web→SV1→2→3→4→5 75.47±0.20

Table 2. Accuracy and standard error over 5 runs on SV5 test set
for models with different bridging domain configurations.

search engines, and 2) the surveillance-nature images are
collected from surveillance cameras. The dataset is com-
posed of 52, 083 web images across 431 car models and
44, 481 SV images across 181 car models, with these cate-
gories of SV set being inclusive of 431 categories from web
set. We use an illumination condition as a metric for adapta-
tion difficulty and partition the SV set into SV1–5 based on
the illumination condition of each image. SV1 contains the
brightest images, thus is the easiest domain for adaptation,
whereas SV5 contains the darkest ones, thus is the hardest to
adapt. Sample web and SV images can be found in Figure 1.

We present two experimental protocols. First, we evaluate
on an adaptation task from web to SV night (SV4–5) using
SV day (SV1–3) as one domain bridge. We compare the fol-
lowing models in Table 1: baseline model trained on labeled
web images, DANN from source to target (Web→SV4–5),
from source to mixture of bridge and target (Web→SV1–
5), and the proposed model from source to bridge to target
(Web→SV1–3→SV4–5).

Second, we adapt to extreme SV domain (SV5) using
different combinations of one or multiple bridging domains
(SV1–4) and characterize the properties of an effective bridg-
ing domain. As in Table 2, DANN fails at adaptation without
domain bridge (Web→SV5). While including SV4 as the tar-
get domain raises adaptation difficulty, using it as a bridging
domain (Web→SV4→5) greatly improves the performance
on the SV5 test set. Including SV3 as an additional bridging
domain (Web→SV3→4→5) shows additional improvement.

4. Conclusions
This work aims to simplify adaptation problems with ex-

treme domain variations, using unlabeled bridging domains.
A novel framework based on DANN is developed by intro-
ducing additional discriminators to account for decomposed
many, but smaller source-to-target domain discrepancy.
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