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Recently it has been illustrated that Streaming networks
(STNets) [I, 2] are capable of recognizing zero noise-
corrupted images with moderate accuracy without using
special techniques or training data augmentation. STNets
are a family of convolutional neural networks, which con-
sist of multiple neural networks (streams). Each stream has
different input from other streams. Outputs of all streams
are concatenated and fed into a single joint classifier. Each
stream takes a unique intensity slice of an input image. In
the most recent study [3], it has been shown that STNets
outperform a 1-stream simple convnet [3] for various types
of noise and image distortions. The study [3] concludes
that noise-robust image classification is achieved by the
streaming packaging of the simple convents into one multi-
stream network equipped with image intensity slices as in-
puts. The study [3] was conducted using cifar10 corrupted
dataset'[4], which includes 19 different types of distortions.
Here we illustrate results for six types of distortions, i.e.,
brightness change, contrast change, fog, frost, glass blur,
and snow, which are the most relevant to adverse weather
conditions, in Fig. 1. In the same study, some preliminary
results of STNets application for low light image classifica-
tion were introduced. In this study, we focus on the issue of
low light image classification and introduce some results of
the work in progress.

Streaming Networks Architecture STNets are con-
structed of multiple parallel streams, whose outputs are con-
catenated and fed into a classifier. During training, params
of all streams are tuned independently. Each stream is tak-
ing a certain piece of information and its input is different
from the inputs of the other streams. In the original studies
by Tarasenko and Takahashi [!, 2], each stream had input
in the form of the image intensity slice. STNet architecture
is presented in Fig. 2. Mathematically, Img* image rep-
resentation using orthogonal functions can be described by

eq. (1) [5):

Img* =" ¢i(wi,y:) (1)
i=1
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Figure 1. Illustration of robust recognition of corrupted images
from Cifar10 Corrupted dataset by 5-stream STNet (STNet5) vs.
1-stream simple convnet.
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Figure 2. STNet architecture.

where ¢;(+),i = 1, ..., n, is a function and a pair (x;, y;),
=1, ..., n, represents some part of an original image. Func-
tions ¢;(+), i=1,...n, correspond to the streams of an STNet,
pairs (z;, y;), i=1,...n, correspond to intensity slices.
Classification of Low Light Images To test whether
STNets can successfully classify low light images after hav-
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Figure 3. Apply Gamma transform: a) original cropped image; 2)
output of Gamma transform with v=5.6.

ing been trained on normal light images, we employ Car-
vana’ dataset. Carvana dataset contains in total 36 car mod-
els. We have selected only the front views of all car mod-
els. A new dataset consists of 6561 images. For our ex-
periments, we also have resized original Carvana images to
128x191 pixels (height x width). To imitate low light con-
ditions, we have applied Gamma transform with y=5.6:

Img* = (Img/255)7 = 255 (2)

Examples of original lighting condition image and cor-
responding low light image after Gamma transform are pre-
sented in Fig. 3 a) and b), respectively. To illustrate the
effect of Gamma transform, we have cropped images to fo-
cus only on the area with a car front view.

Throughout experiments, we have used all original 6561
images as the training set (original images). We have also
prepared 6561 images after Gamma transform (low light
images). To test the networks we used two protocols with-
out (no-aug) and with augmentation (aug). In this context,
augmentation implies that randomly selected 50% of low
light images are added to original images. In the no-aug
case, the training set consisted of original 6561 images and
the test set consisted of 6561 low light images. In the aug
case, the training set consisted of 9841 (6561 original im-
ages + randomly extracted 3280 low light images) and the
test set consisted of 3281 low light images remaining after
random extraction. Each network was run 5 times.

In total, we have tested eight convnets: VGG16 and
VGG19 [6], InceptionResNetV2 [7], MobileNetV2 [&],
NASNetMobile and NASNetLarge?[9], ResNet50 [10], 5-
stream STNet (STNet5).

The results are presented in Figs. 4 and 5 for no-aug
and aug cases, respectively. These figures introduce best
achieved accuracy for each network across 5 runs. Fig. 4
introduces no-aug results and Fig. 5 reports aug results,
respectively, vs. model size as number of params, including
both trainable and non-trainable params.

Our results indicate that in the no-aug case, STNet5 out-
performs all other networks in accuracy while being the

Zhttps://www.kaggle.com/c/carvana-image-masking-challenge
3only used in augmentation case
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Figure 4. Comparison of convnets’ performance for Carvana data
in without augmentation during training.
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Figure 5. Comparison of convnets’ performance for Carvana data
with augmentation during training.

smallest network. In the aug case, STNet5 ranks second
with ~90% accuracy and 2,464,296 params, while VGG19
ranks first with ~95% accuracy and 73,590,628 params.
Thus, VGG19 provides a ~5% accuracy gain while being
~30x bigger.

Discussion and Conclusion We have illustrated that
STNets can effectively deal with various types of image dis-
tortion, which can be introduced by adverse weather and
lighting conditions. We have tested STNet5 performance
against the other eight networks when dealing with low light
images. Our results indicate that while being the smallest
network STNet5 ranks first in the case of no augmentation
training and ranks second in augmentation case, giving up
the first place to ~30x bigger VGG16 network. Therefore
we conclude that STNets constitute a promising architec-
ture in terms of the balance between efficient usage of net-
work capacity and high accuracy for classification of cor-
rupted images due to adverse weather or lighting conditions.

To continue testing STNets, we plan to extend our exper-
iment for more neural networks and include new techniques
and datasets designated to the adverse weather (fog [1 1] and
rain [12]), and lighting conditions (nighttime [13]).
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